
Fermi National Accelerator Laboratory

Comparisons of CPS Performance Under Different
Network Loads

Aleardo Manacero, Jr.

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

dcce f ibilce I UNESP
S.J.R. Preto, Brazil

January 1994

Submitted to IEEE Transactions on Computers

a Operated by Universities Research Association Inc. under Contract No. DE-ACO2-76CH03000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or any agency
thereof

Comparisons of CPS performance under different network loads

Aleardo Manacero Jr.*
dcce/Ibilce/UNESP - Fermilab

Abstract

This work presents results from the comparison tests done
over two different networks using the CPS ’ (Coopera-
tive Process Software) distributed tool. One system was
a non-dedicated UNIX 2 cluster composed by several RISC
workstations. The other system was another UNIX clus-
ter which is dedicated to run CPS exclusively for a single
user. Benchmarks were obtained through the submission
of a simple test program over the cluster using three differ-
ent approaches: a single process task, a CPS synchronous
process and a CPS asynchronous process. The speed-ups
achieved in both systems were then compared in order to
make some remarks about the efficiency of CPS under dif-
ferent conditions of use. From these comparisons it was
possible to conclude that the CPS should be improved to
run in a non-dedicated cluster, like the UNIX cluster used
in this experiment is.

Index terms: CPS - Cooperative Process Software,
dedicated network, distributed processing, multi-user
network, network traffic, performance analysis.

1 Introduction

The use of several workstations to perform a single
task instead of a single workstation would increase the
speed of problems resolution dramatically. This could
be antecipated from the description of the CPS man-
agement system [l], a software tool designed to man-
age parallel processing over parallel or distributed ma-
chines, which points to a big gain if your process could
be split into several subprocesses. The reconstruction
programs of particles physics have this characteristic.

Experiments such as the E-791 collaboration at Fer-
milab [3,2] collect large amounts of data from the colli-
sion of tagged particles in a fixed target detector. This
data is composed of events, which are collections of
electric signals originated in several sections of the de-
tect,or (Cerenkov, drift chambers, calorimeters, etc.),
and stored in some kind of storage device to be ana-

*currently at the State University of S&I Paula - UNESP
Dept. of Computer Science and Statistics
R. CristovGo Colombo, 2265
S. Jo& do Rio Preto, 15055-000, Brazil.

'01992, 1993 Universities Research Association, Inc.
2UNIX is a registered trademark of AT&T

lyzed at a later moment [4]. The analysis process starts
with the reconstruction of such data, that is, the search
for the vertexes and trajectories of all particles that ap
pear in a single event. Since all events were stored in a
sequential order, it is possible to treat each of them as
an independent entity, which could be examined by the
reconstruction code without any information from an-
other event. This characteristic makes it appropriate
to run in computer farms, under tools like CPS.

Since the use of farms significantly improves the
speed of the reconstruction and analysis efforts, it is
also interesting to know the behavior and the perfor-
mance of the CPS when it is applied to a non-dedicated
network of workstations, which could provide another
source of computing power. This performance also
could be a good measure of the network performance
when operating under a distributed process problem
since the parallelism offered by the CPS can be under-
stood as a distributed operation over the system and
such an architecture (the network) is quite different
from the dedicated farm architecture [5].

In this work one of the E-791 programs for data
preparation was used as the benchmark program. This
program was chosen for the ability to make its CPU de-
mands per data byte range from some milliseconds to
a few seconds, which was a necessary condition to the
benchmark program. The following section describes
the two systems tested in this comparison. In the third
section the tests on a dedicated IBM test farm con-
taining six processing nodes are described. A fourth
section describes the tests on the UNIX cluster in the
Physics Department. Following these are sections dis-
cussing the results from both tests and general consid-
erations.

2 Computing environments

This work was executed on two different computing
systems. The first and more recognizable one is a
conventional network of workstations assembled in a
multi-level bus topology. The other system is a com-
puter farm, which is a network of workstations assem-
bled in a way that resembles a master-client parallel
architecture.

1

Figure 1 shows the conventional network, where the
most important characteristic is the fact that it is a
multi-user environment, with no-restrictions in its us-
age. It has cross-mounted disks, which turns the net-
work traffic into a very influential factor in the system
performance. Those conditions represent a very com-
mon pattern in the configuration of networked work-
St&ions and indicate the reason for the inclusion of
such a system in this comparison.

Bus 1

Bus 21

Figure 1. Multi-level bus network.

Although computer farms are not a major concern
in production from the industry point of view, they are
very useful for the kind of processing done in the re-
construction and analysis of high energy physics (HEP)
experiments, such as E-791, where the level of integra-
tion among the parallel units is very small since the
data can be split into small independent fragments.
The farm’s basic architecture is shown in figure 2. The
syst,em consists of a set of processing nodes (conven-
t,ional workst,ations with little memory and disk capac-
ity, fast CPU’s and no monitors) whose only function
is crunch data at the highest speed possible. The sys-
tem is usually dedicated to a single user, running only
one job at a given time.

External bus

&zJ
I 1

farm bus t

Figure 2. Farm architecture. Figure 2. Farm architecture.

The basic differences between both systems are the
load applied to each one and the cost of the equipment
used. The cost of one farm system is lower than of the
conventional one since the farm workstations are con-
figured without some costly devices that are not nec-
essary for the kind of processing to be done. Also the
non-CPU system load for the farms is lower, since they
are user dedicated and the network traffic is restricted
only to the traffic created by the user’s job, while in the
conventional network traffic is originated by the com-
bination of traffics generated by several users accessing
different disks and their respective jobs.

3 The IBM farm performance

The tests on a small IBM farm, only six processing
nodes, were done in order to have comparison param-
eters to analyze the speed-up obtained in the UNIX
cluster. In these tests the time spent between the job
submission and the job completion, the release time
(T,), was the unique concern and the only parameter
measured. CPU occupation, data transfer rates and
other usually useful parameters were not measured be-
cause they are meaningless in an environment where
the CPU and the network are shared with several other
users.

The release time was used to calculate the speed-up
provided by the parallel runs against the single process
run. The single process run consists of doing the com-
plete job using just one CPU without the CPS man-
agement. It should be made clear that this task is
different from a CPS submission using just one CPU
since CPS splits every job into three subprocesses, a
reader process, a writer process and a client process,
what leads to sharing of the CPU between three pro-
cesses, plus a job manager created by CPS, instead of
only one global process like in the single process run.

Although the code used in these tests could be tuned
to any event per second ratio, they were done consid-
ering only two opposite conditions, one where the job
was I/O limited and another where the job had an ex-
ecution time close to the real reconstruction time in
the E-791 case. From these tests were obtained data
of speed-up versus number of CPU’s in use. A different
study can be made to provide graphical help to decide
when a job should be parallelized or not and could be
based in the interaction between the time of the single
process run, the overhead time int,roduced by the CPS
management per client and the number of clients.

The Table 1 shows the results for the IBM farm in
terms of release time for runs over different numbers
of processing nodes. These tests were done under the
following conditions:

2

Table l- Events/second with the asynchronous
CPS on an IBM farm.

Case 1 client 2 clients 4 clients 6 clients

A (35 ev/eec) 0.956 0.896 0.782 0.705
B (1.2 ev/sec) 0.888 1.789 3.583 5.445

Table 2- Speed-up for asynchronous CPS on an
IBM farm under different processing time conditions.

1.

2.

Number of events examined in each run: 1500

Events/second in single process: (A) 35 ev/sec
and (B) 1.2 ev/sec

From this table it is possible to make a second ta-
ble showing the speed-up provided by the parallel runs
over the farm when compared to the single process run.
This speed-up can be seen in the Table 2, where the
first row is the speed-up for an I/O bounded task while
the speed-up for a CPU bounded task is in the last row,
and in Figure 3 at the end of this text.

booking at these two tables, especially in the speed-
up table, one observes that parallel execution only
gains if the task requires enough processing to not be
I/O-bound. That is, if the task has a predominance in
I/O operations when compared with CPU operations,
there is no advantage in using several CPUs for its
processing. The amount of CPU load that is necessary
to be optimal for a certain number of nodes or, from
a different perspective, how many nodes are adequate
for a certain CPU load, has not been analyzed.

One interesting point to be noted is the evident
anomaly of the parallel runs in the I/O-bound case,
where the speed of processing decreases with the ad-
dition of new CPUs. This fact occurs because the ac-
tivit#y of reading events took more time than analyzing
events. Since CPS activities to manage CPUs are di-
rectly proportional to the number of CPUs, for more
CPUs CPS takes more time for itself and the system
performance will degrade.

However, since in a CPU-bound execution there are
clear advantages in using CPS and farms, with speed-
ups close to the expected optimals, one could expect
that the use of CPS in a regular network of worksta-
tions should provide responses that, at least, encourage
its use in such systems as well. Unfortunately it will be

shown in the next section that this is not true for most
ordinary networks, with architectures not dedicated to
a specific task.

4 The UNIX cluster perfor-
mance

Since the main interest here is the test of the CPS man-
agement system in a regular network, the same tests
that were performed in the IBM farm were applied to
the physics department cluster of SGI machines. Its
load is almost constant during daytime and does not
drops significantly during night time, since most of the
users leave batch jobs to be run after hours.

The efficiency of the system should be similar to that
provided by the farm, because when the CPS strat-
egy is combined with the characteristics of the event
reconstruction algorithm one could antecipate that if
n workstations are used to perform the parallel code
there will be a speed-up close to n. So, if the user as-
semblies n-f-1 CPUs, leaving one of them to write and
read data, as it is done in the farms, he/she gets n
CPUs doing the job. Since no one of them needs to
know what its neighbor is doing, he/she has indepen-
dent tasks performed by independent CPUs. Therefore
if there are n CPUs in the system it should do the work
in a n-th part of the time spent by just a single CPU
doing the same job, excluding the general I/O time of
course. It must be clear at this point that the cpu load
does not have a great influence in these results since
all nodes have the same cpu usage and the speed up
is relative to the single process that is also running in
one of those nodes.

4.1 I/O bound tasks

Because it is known that I/O-bound tasks do not have
any improvement in their resolution time when run in
parallel processors it is useful to have a benchmark
using such tasks since this can provide some indica-
tion about the dependence between the network traffic
and the distributed processing performance. The E
791 stripping code was used as an I/O bound task.
It consists of reading an event and selecting it or not
based on some limit values taken from the event data
structure and geometry pattern data. This particular
job reflects the interest in I/O bound tasks, since the
stripping operation over the primarily reconstructed
data set does not claim much CPU time and the read-
ing and writing operations are performed over 8mm
tapes, which are not fast.

The Table 3 contains the results of several runs of
the stripping job over the same input data used in the
farm tests, and it was obtained under the following

3

conditions:

1. Server node: one Personal Iris 4D/35 work-
station

2. Number of events examined in each run: 12971

3. Events/second in single process: 49 ev/sec,
which implies in an I/O-bound limitation

These results imply in the speed-up relations shown
at Table 4, where the first row shows the speed ratios
among the CPS synchronous runs and the single pro-
cess run. The second row indicates the speed ratios
among the the CPS asynchronous runs and the sin-
gle process run. The third and fourth rows show the
speed-up among the several synchronous runs and the
CPS run over just one CPU (fnpx05) and the perfor-
mance increase when we use an asynchronous approach
instead of the synchronous one, respectively. Figure 4
shows the plots of these speed-up curves.

To understand these numbers it is necessary first
to define the differences between the synchronous and
asynchronous versions of CPS. The differences are in
the interprocess communication mechanism used in
each. The early versions of CPS had only the syn-
chronous mode, where each time that one process had
to t,ransfer a message to another process it had to do
so synchronously, stopping its activities while its part-
ner was sending/receiving that message. In order to
get a better performance, CPS was changed to enable
an asynchronous approach to communication between
processes. This approach was used in this case to make
the data transfer between the reader process and all
the clients. With this structure the reader can send a
packet containing data and resume its reading opera-
tion even before there is a client looking to read that
packet. The same was not done for the communica-
tion between writer and client processes because the
speed gain achieved is minimal (much less than 1%)
and also due to some safety protocols used to guaran-
tee the processing and the statistical recording of the
complete data set.

One can see from table 4 that CPS is not effective
on tasks that are I/O limited since none of the differ-
ent configurations achieved a performance better than
the single process case. This is an interesting result
for anyone doing a project’s computer configuration
planning, since it implies that tasks such as the one
performed by the stripping code should not be run in
a farm or in any parallel environment unless it becomes
a CPU-bound task.

Another remark about these results is that the per-
formance of the asynchronous version does not change
much for different number of working nodes while the
same does not hold true for the synchronous case. The

speed-up of synchronous CPS has a huge variation with
the number of CPU’s in use, with processing speeds
ranging from near 15% of the single process speed with
one CPU to more than 90% for five CPU’s, while the
range for the asynchronous CPS ranged from 85% to
98%. The communication protocol plays a large role
in those numbers and is the fundamental culprit in the
low efficiency of synchronous CPS since in this case the
reader process cannot concurrently collect data from
the tape and each client must explicitly indicate that
data is needed. This causes a serious delay in the read-
ing activity since the reader must wait for the clients
get the data just read to be able to read further data
from tape. This delay is minimized when new clients
are added to the system, because the reader could have
shorter waiting times while serving more nodes. In the
asynchronous case the waiting times are minimal be-
cause each client serves itself with buffered data, so the
reading process could run at a tape speed, except for
overhead introduced by the network traffic. Then, its
performance is more constant independent of number
of nodes.

A resource allocation policy could be guided from
the “execution time t number of nodes” curve. In the
synchronous case this curve shows more clearly how an
excessive number of nodes can deteriorate the system
performance. This deterioration comes from the fact
that the above a certain level of parallelism, both the

Process # CPUs Elapsed time events second

Single 1 271 47.863
MP Svnc 1 1966 6.598

Table 3- Events/second in a I/O-bound case for
single process.

of Drocessors I 1 I 2 I 3 I 5 I 7 I 9 I
., s

Sync/SP 0.14 0.31 0.70 0.92 0.83 0.73
Async/SP 0.98 0.98 0.88 0.93 0.86 0.86
Sync/Sync 1.00 2.22 5.07 6.69 5.99 5.27
Asvnc/Svnc 7.09 3.20 1.27 1.01 1.04 1.18

Table 4- Relative speed-ups achieved in the I/O-
bound case.

4

overhead given by the interprocess communication and
the processes’ waiting times are big enough to have al-
ways more processes waiting for data than data avail-
able. The same conclusion can also be drawn from
assynchronous CPS, although in this case the opti-
mal number of parallel processes is even smaller than
for synchronous CPS due to its better communication
mechanism, which reduces the overhead to proceed
data transfers.

4.2 CPU-bound tasks

The experimental data obtained for the execution of
the CPU-bound task is presented in Table 5. This
kind of task represents the reconstruction code, which
is a cpu intensive process. In order to perform this test
with the same data pattern that was used in the I/O-
bound task tests, a slightly modified stripping code
was used instead of the regular reconstruction pro-
cess. This was the same code used for the tests on
the IBM farm, what turns feasible the comparisons be-
tween both systems. The modifications needed in the
stripping code were minimal, the addition of a loop
in order to delay the event selection by an adjustable
amount of milliseconds. The conditions for this test
were:

1. Server node: one Personal Iris 4D/35 work-
station

2. Number of events examined in each run: 1286

3. Events/second in single process: 5 ev/sec,
which implies an event-dominant case

Table 6 is the speed-up table analogous to table 4,
showing speed ratios between the asynchronous and
synchronous CPS versions and the single process run.
Figure 5 shows the speed-ups achieved in this experi-
ment.

From these tables we see an interesting difference
between the asynchronous and synchronous versions of
CPS. As seen in table 6 the asynchronous version pro-
vides better speeds than its counterpart. This is true
for the configurations tested, where the minimal im-
provement was 13%, but its curve (figure 5) indicates
that the difference decreases when the number of nodes
is increased. In theory this difference shall approach
zero if enough nodes are added to the system.

The explanation of why this occurs is based on I/O-
bound task limitations, since if the tape dictates sys-
tem speed, the communication protocol cannot play a
large role in the efficiency, as seen in the previous study
case for a larger number of CPU’s So, if the number of
nodes linked to the real processing grows, the number
of events processed by each one of them decreases,

1 Process 1 & CPUs 1 ElaDsed time 1 events/second 1

MP S&c 1 7 1 218 I 5.899 MP Sync I 9 I 200 6.430 I

Table 5- Events/second in an event-dominant case.

of nodes 1 2 3 5 7 9

Sync/SP 0.230 0.240 0.385 0.887 1.174 1.279
Async/SP 0.290 0.298 0.503 1.015 1.383 1.446
Sync/Sync 1.000 1.046 1.674 3.861 5.107 5.567
Asvnc/Svnc 1.261 1.242 1.306 1.144 1.178 1.130

Table 6- Speed-up achieved in an event-dominant
case.

making them wait for the reader more frequently than
if there are few processors. That represents an I/O-
bound like task.

In the other hand, neither CPS versions had shown a
significant improvement in the processing speed, with
a maximum gain of less than 50% when compared to
the single process run but using a total of 8 processing
nodes. This results means that the network traffic is
dominant in the determination of the system speed.
Since the network configuration enables users other
than CPS processes it creates a significant amount of
strange traffic competing for the single physical sup-
port for communication, which implies bigger delays
in interprocess communication and, therefore, a slower
system for the CPS process.

5 Comparisons between config-
urat ions

The comparison of CPS running over a farm and over a
non-dedicated network can be divided into two differ-
ent aspects: the computational effort per data byte and
the network load influences on system performance.
The former will not be discussed in detail here because
it is not the main topic of this work. It is enough to
point out that the parallel systems do have a very poor
performance when the computational effort to process
the data is much smaller than the effort spent doing
input/output operations.

This does not condemn parallel schemes for data ac-

5

quisit,ion for example, that are mainly dedicated to in-
put,/output operations, because in these schemes the
relevant aspect is the speed in which data can be col-
lected and/or stored. In such systems the acquisition
and storage of the data is what is really done in par-
allel while the processing of this data in order to store
it might or might not be done in parallel. In any case
here the reason to use parallel systems is the speed of
data acquisition, which means that the ratio between
the time spent processing a given amount of data and
the time spent doing I/O for this same data is favorable
to the parallelization of such activities.

With respect to the network load, there are some
interesting results to be pointed out. Most of them
are related to the efficiency of CPS management over
a non-dedicated network, which was well below to that
expected for the kind of parallel algorithms and data
used here. Some deficiencies were already presented
in the previous sections but will be presented in detail
here.

The performance of CPS in a dedicated environment
such as a farm shows a speed improvement nearly opti-
mal; a highly cost-effective system. But the same does
not hold when CPS is applied to a more general net-
work, where there is no exclusiveness in the use of the
nodes. In this situation the performance drops signif-
icantly, achieving no more than a small gain relative
to t,he speed of the sequential execution in the single
process scheme.

Table 7 lists the ratios (in percentage) between the
theoretical speed-up, given by the number of effec-
tive processing nodes, and the experimental speed-up
achieved for each configuration tested, given by tables
2, 4 and 6. Lines 1 and 4 give the values for the IBM
farm, the second and fourth line give them for the
UNIX cluster running synchronous CPS while the lines
3 and 6 contain the values for the CPS asynchronous
runs in the UNIX cluster. The first 3 lines are related
to I/O-bound tasks while lines 4 to 6 are related to
CPU-bound tasks. The same data is plotted on figure
6.

Before start the analysis of the CPU-bound case it is
necessary to make a remark about the strong similarity
among the three I/O-bound cases. There, the percent-
ages achieved are very similar to each other when there
are more than 2 nodes in use. The same does not hold
for the CPU bounded tasks, where the numbers from
the farm experiment are widely different from the oth-
ers.

When the task is CPU-bound the performance of the
farm environment is far better than the performance
of the network environment. The reasons for such dif-
ferences were already mentioned and are linked to the
extra traffic introduced by additional messages, i.e.

CPU bounded

Table 7- Percentage of optimal speed-up achieved
in different environments and tasks for some maximum
theoretical speed-ups.

messages that are not related with the CPS job, com-
peting for the use of the network physical layer in the
UNIX cluster.

But all three environments showed a reasonable
steadiness in their experimental/theoretical speed-up
ratios along the changes in the number of working
nodes in the CPU-bounded cases. This steadiness is
remarkable for the farm tests, where the variation ob-
served between those ratios were inside a If1.4% in-
terval from the average value. For the non-dedicated
network the results were less steady but also kept some
linearity along the tests (f25% from the average value)
relative to I/O-bounded cases (more than *lOO% fluc-
tuation from the average).

This steadiness can be explained by the fact that
if you can keep all the processors busy the improve-
ment in the system speed will be proportional to the
increase in the number of processors in use. This also
explains the increased fluctuations observed for the
conventional cluster, where the cpu usage dropped sig-
nificantly due to the extra traffic in the network.

Although the steadiness present in the farm experi-
ment with a cpu-bounded task is, in itself, interesting,
it also leads to the conclusion that there must be a
threshold in the number of worker nodes in use, since
if too many nodes are used for the same amount of
data, they are going to be idle part of the time, wait-
ing for more data to process, as per the I/O-bound
case. When the number of nodes is above this level
the system does not provide any gain per additional
parallel node. The determination of this threshold is a
task that should be done prior to the farm installation,
saving processing time and avoiding extra costs to the
user.

6 Conclusions

Among the conclusions not related with CPS that can
be drawn from this experiment are t,wo especially im-
portant ones that are interesting to both, the system

6

manager and the final user of the system, for different
reasons.

The first one is the fact that not all jobs are suitable
for parallel processing. The user can use this infor-
mation to plan and choose which tasks are suited to
parallelization and which are not. The manager has
to use this information to avoid assigning parallel re-
sources to users whose tasks are not suited for that.

An extension of this is the fact is the second conclu-
sion and it is related with the level of parallelism that
each task admits. Although there are jobs that are not
parallelizable at all, there are some others that are par-
allelizable only up to certain levels (in reality all jobs
can fall in this category if you consider one node as a
system with parallelism level zero) and this is a char-
acteristic that should be considered when considering
the use of parallel systems.

Determination of the parallelism level adequate for
a given kind of task is very useful to the user, who can
plan (and request) a computer configuration that is, at
the same time, optimal in speed and cost. This shall
give him a more consistent argumentation towards the
obt,ention of his needs. On the other side the manager
could use the same kind of information to justify the
denial of any number of nodes that exceed the optimal
level for a specific utilization.

A few remarks about the use of CPS under different
situations: the major conclusion is that CPS processes
cannot afford competition for the resources in use, that
is, CPS, as well as other “parallel processing” tools,
does not do well sharing the hardware resources with
other users. In the CPS case the sharing of the network
is the major cause of poor performance when compared
to an exclusive access environment, as it was demon-
strated by the results in section 4. Sharing the cpu did
not play a large role here since the parallel results were
compared with sequential runs processed in the same
condition, i.e. various users sharing the CPU.

However, if the access to all of the system resources
can be restricted to a single user which runs the par-
allel process, CPS becomes a very useful tool, since
it is simple to use and gives a performance that is
reasonably close to optimal, introducing only a small
overhead due to synchronization and communication
management processes.

In conclusion, the performances of CPS processes in-
dicated that it is useful for dedicated systems but must
be improved for use in a multi-shared environment.
However CPS was developed having in mind that the
user is a physicist and the problem to be solved is one
that involves large calculations over large amounts of
data and that this could be done in a dedicated sys-
tem. The trials done here were investigations trying to

verify if the scope of applications for CPS can be aug-
mented with no additional development effort. This
proved to be untrue.

7 acknowledgements

This work was performed with the support of the Fermi
National Accelerator Laboratory and the State Uni-
versity of Sao Paulo - UNESP. The technical support
received from the Computing Division and the Physics
Department of Fermilab were very helpful to the com-
pletion of these experiments.

References

[l] M. Fausey et all; “CPS & CPS Batch Reference
Guide - Version 2.8”, Fermilab, 1993.

[2] R. A. Sidwell; “E791 status report”, 7th Meeting
of APS, Division of Fields and Particles, voll.,
p.672-674, 1993.

[3] J . Appel; “Hadroproduction of charm particles”,
Annu. Rev. Nucl. Part. Sci., v.42, p.367-399, 1992.

[4] S. Amato et all; “The E791 parallel architec-
ture data acquisition system”, Nuclear Instr. and
Meth. in Phys. Res. A, n. A324, p.535-542, 1993.

[5] R. Hance et all; “The ACP Branch Bus and
Real-Time Applications of the ACP Multiproces-
sor Systems”, Fermilab-Conf-87/76, 1987.

1 2 4 6
Number of nodes

Figure 3. Speed-ups achieved in the farm system.

7

Nodes

Figure 4. Speed-ups achieved in the UNIX cluster
with an I/O-bound task.

1
speed-up ..---I

___--- ------- i
5 ,................. -‘................. I yzJ”sf: . j

,..- :
: .- *,-* : ** l-Sync/sP I

/-
,$’

;As~JSP i

.‘i
,/’ i

/ -----. sync/sync]

,, :
j - AsynJSyuj

.t........ 7 . ;,A “...{ . 4

2 3 5 I 9
Nodes

Figure 5. Speed-ups achieved in the UNIX cluster
with a CPU-bound task.

80
60
40
20
I

................

................

-farm I/O bound.
-----sync. I/o bound.

. async. I/o bound.
----- farm CPU bound.
......%,..I sync. CPU bound.
- async. CPU bound.

1 2 3 4 5 6 1 8
Number of working nodes

Figure 6. Relative speed-ups achieved in relation
to the theoretical optimal speed-up.

8

